Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium

نویسنده

  • M. M. Selim
چکیده

The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves’ incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly. Keywords—Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection of Plane Wave at Traction-Free Surface of a Pre-Stressed Functionally Graded Piezoelectric Material (FGPM) Half-Space

This paper is devoted to study a problem of plane waves reflection at a traction-free surface of a pre-stressed functionally graded piezoelectric material (FGPM). The effects of initial stress and material gradient on the reflection of plane waves are studied in this paper. Secular equation has been derived analytically for the pre-stressed FGPM half-space and used to show the existence of two ...

متن کامل

Rayleigh Wave in an Initially Stressed Transversely Isotropic Dissipative Half-Space

The governing equations of a transversely isotropic dissipative medium are solved analytically to obtain the surface wave solutions. The appropriate solutions satisfy the required boundary conditions at the stress-free surface to obtain the frequency equation of Rayleigh wave. The numerical values of the non-dimensional speed of Rayleigh wave speed are computed for different values of frequency...

متن کامل

Reflection From Free Surface of a Rotating Generalized Thermo-Piezoelectric Solid Half Space

The analysis of rotational effect on the characteristics of plane waves propagating in a half space of generalized thermo-piezoelectric medium is presented in context of linear theory of thermo-piezoelectricity including Coriolis and centrifugal forces. The governing equations for a rotating generalized thermo-piezoelectric medium are formulated and solved for plane wave solutions to show the p...

متن کامل

THE EFFECT OF PURE SHEAR ON THE REFLECTION OF PLANE WAVES AT THE BOUNDARY OF AN ELASTIC HALF-SPACE

This paper is concerned with the effect of pure shear on the reflection from a plane boundary of infinitesimal plane waves propagating in a half-space of incompressible isotropic elastic material. For a special class of constitutive laws it is shown that an incident plane harmonic wave propagating in the considered plane gives rise to a surface wave in addition to a reflected wave (with angle o...

متن کامل

Wave Propagation in Micropolar Thermoelastic Diffusion Medium

The present investigation is concerned with the reflection of plane waves from a free surface of a micropolar thermoelastic diffusion half space in the context of coupled theory of thermoelastic diffusion. The amplitude ratios of various reflected waves are obtained in a closed form. The dependence of these amplitude ratios with an angle of propagation as well as other material parameter are sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012